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Abstract13

We study a variant of the classical membership problem in automata theory, which consists of14

deciding whether a given input word is accepted by a given automaton. We do so through the lenses15

of parameterized dynamic data structures: we assume that the automaton is fixed and its size is16

the parameter, while the input word is revealed as in a stream, one symbol at a time following the17

natural order on positions. The goal is to design a dynamic data structure that can be efficiently18

updated upon revealing the next symbol, while maintaining the answer to the query on whether the19

word consisting of symbols revealed so far is accepted by the automaton. We provide complexity20

bounds for this dynamic acceptance problem for timed automata that process symbols interleaved21

with time spans. The main contribution is a dynamic data structure that maintains acceptance of a22

fixed one-clock timed automaton A with amortized update time 2O(∣A∣) per input symbol.23
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1 Introduction27

Imagine we would like to monitor whether the behavior of a server is correct. The run of28

the server can be abstracted by an infinite stream w = a1a2a3 . . . ∈ Σω, where Σ is a finite29

alphabet of possible events. The events are disclosed one at a time on the input, and at every30

moment we should tell whether the prefix consisting of the events observed so far is correct.31

A simple yet expressive formalism for describing properties of such data streams is provided32

by classical finite automata. For example, suppose we would like to verify the property33

that a certain resource is being used by at most one process. Assume that the alphabet is34

Σ = {o, r} ∪ Γ, where o denotes a request of the resource, r denotes a release of the resource,35

and Γ contains other immaterial events. The streams satisfying the discussed property can36

be then characterized as those where every prefix is accepted by the two-state automaton A37

of Figure 1. Here, a state indicates whether the resource is currently available or not.38

Verifying the correctness of a stream over time can be formalized through the following39

dynamic acceptance problem: for a fixed automaton A, design a data structure that upon40

receiving subsequent events from the stream, monitors whether the prefix read so far is41

accepted by A. An obvious, though usually suboptimal solution would be to store in the data42

structure the prefix read so far, and, upon receiving a new symbol, run the automaton on the43

whole prefix. This would require time linear in the total length of the prefix, which after a44

while can become very large compared to ∣A∣, the size of the automaton A. So we would like45

to minimize the update time by smartly organizing and reusing information computed before.46

Cast in this way, the dynamic acceptance problem naturally lends itself to a treatment47

using the notions of parameterized complexity. Namely, we consider the automaton A fixed48

and use the parameter ∣A∣ as an auxiliary measure for expressing guarantees on the update49

time. Ideally, we would like to obtain update time bounded by a computable function of ∣A∣50

only. This way, our work inscribes into the area of parameterized dynamic data structures,51

which is a direction that is still relatively unexplored, but starts to attract considerable52

attention; see e.g. [3, 7, 11] and references therein for an overview of recent advances.53

For finite automata, the dynamic acceptance problem can be solved easily with update54

time O(∣A∣), as follows. After reading a prefix u, the data structure stores the subset of states55

S ⊆ Q in which the automaton may be after reading u (in general, we allow the automaton56

to be non-deterministic). Upon receiving the next input symbol, the set S is updated by57

applying the possible transitions on every state in S. Moreover, telling whether A accepts58

the current input prefix boils down to checking whether S contains an accepting state. Both59

the update and the query described above can be implemented in time linear in ∣A∣.60

Unfortunately, real-life scenarios involve many aspects that cannot be captured by a61

simple formalism such as finite automata. One of these aspects is time. Consider the following62

example of property that needs to be verified: at every moment in time when an event63

occurs, a backup operation has been performed within the last 24 hours. A natural choice to64

model this and similar properties is to enhance finite automata with the ability of measuring65

time, by adding one or more clocks. A definition of the resulting automaton model, called66

timed automaton, is presented in Section 2. Intuitively, a possible timed automaton for the67

A ∶ o

r

Γ Γ
B ∶

b, reset x

Γ ∪ {b} Γ ∪ {b}, x ≤ 24

Figure 1 Left: a finite automaton A recognising Γ∗(oΓ∗rΓ∗)∗. Both states of A are accepting,
but invalid streams do not admit any run. Right: a timed automaton B with single clock x.
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considered property would have one clock x and two states, “before backup” and “after68

backup”, and would behave as follows (see the right hand-side of Figure 1). The idea is69

that while processing an input prefix u, the automaton non-deterministically guesses a single70

backup event b and verifies that this event occurred within the last 24 hours. Thus, upon71

reading an occurrence of event b, the automaton may either ignore this event and carry on,72

or move from state “before backup” to state “after backup” and reset the clock. The input73

prefix u is accepted if the automaton reached state “after backup” and, during events since74

the last reset, the value of the clock has never exceeded 24 hours.75

Timed automata are a central topic in the area of verification, and they have a rich and76

diverse literature, see e.g. [4, 8, 12]. In this work we are interested in the dynamic acceptance77

problem for timed automata, defined analogously to that for finite automata.78

Note that in the setting of timed automata, the same technique that worked for finite79

automata will not work so easily. The reason is that for a finite automaton A, the set80

of configurations in which A may be is a subset of the set of control states, whose size is81

bounded by the size of A. On the other hand, a configuration of a timed automaton consists82

of a control state and a tuple of clock values, so the number of possible configurations is a83

priori unbounded. Concretely, after reading a prefix of length n, there may be as many as84

O(nk) different configurations which the given k-clock timed automaton may possibly reach,85

due to non-determinism and clock resets. Efficient maintenance of this configuration set in a86

data structure poses the main conceptual challenge in this paper.87

Our contribution. We design a dynamic data structure that, for a fixed timed automaton88

A with one clock, monitors whether A accepts the prefix read so far with amortized update89

time 2O(∣A∣). This can be improved to worst-case (i.e. non-amortized) update time when the90

input stream is discrete, that is, when all time spans between consecutive events are equal.91

Our data structure actually works in a slightly more general setting, where the automaton A92

is not entirely fixed, but rather is provided on input upon initialization of the data structure.93

We also give a somewhat complementary lower bound: under the 3SUM Conjecture, we94

prove that there exists a fixed timed automaton A with two clocks and additive constraints95

on them such that no data structure for the dynamic acceptance problem for A may achieve96

strongly sublinear amortized update time (i.e. time O(n1−δ) for δ > 0). Here, by additive97

constraints we mean that in the transition relation of A we may use affine clock conditions98

that involve more than one clock, e.g. x + y = c where x, y are clocks and c is a constant.99

If the given timed automaton A has more than one clock, but only constraints involving100

a single clock are allowed, it remains open whether there is an efficient data structure for the101

dynamic acceptance problem or a lower bound similar to the above one.102

Related work. The setting in this work is close to runtime verification [24], an area that103

focuses on verification techniques that could be performed at runtime, e.g. using timed104

automata [30, 10]. However, while we study monitoring a data stream through a suitable105

data structure in the dynamic setting, studies on runtime verification typically focus on106

static problems. An example of such a problem is: given an input prefix u, verify whether107

there is a sequence of events that extends u to a word accepted by the device (e.g. a finite108

automaton). The problem studied in [29] is similar to the setting presented here; however,109

this line of work considers constants (e.g. 24 in Figure 1) as part of the input contributing to110

the considered parameter, and this considerably simplifies the problem (see Section 2 and 3).111

The dynamic acceptance problem that we consider here resembles the setting of streaming112

algorithms; see e.g. [5, 13, 21] for works with a similar motivation. In this context, a typical113

???
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problem is to compute (possibly approximately) some statistics or an aggregate function114

over the sequence of data, where the main point is to assume severe restrictions on the space115

usage. Note that in our setting, we focus on obtaining low time complexity per update and116

query, rather than optimizing the space complexity. In this respect, our work leans more117

towards the area of dynamic data structures, in particular dynamic query evaluation [9, 22].118

For Boolean properties several papers [25, 26, 6] have considered streaming algorithms for119

testing membership in regular and context-free languages. Another variant of the problem120

was considered in [18, 17, 16], where the regular property is verified on the last N letters of121

the stream, instead of the entire prefix up to the current position.122

The closest to our setting is the work [28], which studies the dynamic evaluation problem123

for monoids over a sliding window, and describes a data structure that can be updated in124

constant time for a fixed finite monoid. When the monoid is finite, the considered problem is125

basically the same as monitoring whether the input stream restricted to the sliding window126

is accepted by a finite automaton. We explain in Appendix A that, in this case, the problem127

can be reduced to the dynamic acceptance problem for a special form of timed automaton.128

2 Preliminaries129

Finite automata. A finite automaton is a tuple A = (Σ, Q, I, E, F ), where Σ is a finite130

alphabet, Q is a finite set of states, E ⊆ Q ×Σ ×Q is a transition relation, and I, F ⊆ Q are131

the sets of initial and final states. A run of A on a word w = a1 . . . an ∈ Σ∗ is a sequence132

ρ = q0
a1ÐÐ→ q1

a2ÐÐ→ . . . anÐÐ→ qn where (qi−1, ai, qi) ∈ E for all i = 1, . . . , n. Moreover, ρ is a133

successful run if q0 ∈ I and qn ∈ F . A word w is accepted by A if there is a successful run of134

A on w.135

Timed automata. Let X be a finite set of clocks, usually denoted x, y, . . .. A clock valuation136

is a function ν ∶X → R≥0 from clocks to non-negative reals. Clock conditions are formulas137

defined by the grammar: CX ∶= true ∣ x < c ∣ x > c ∣ x = c ∣ CX ∧CX ∣ CX ∨CX , where x ∈X138

and c ∈ R≥0. By a slight abuse of notation, we also denote by CX the set of clock conditions139

over X. Given a clock condition γ and a valuation ν, we say that ν satisfies γ and write140

ν ⊧ γ, if the arithmetic expression obtained from γ by substituting each clock x with its141

value ν(x) evaluates to true.142

A timed automaton is a tuple A = (Σ, Q, X, I, E, F ), where Q, Σ, I, F are defined exactly143

as for finite automata, X is a finite set of clocks, and E ⊆ Q ×Σ ×CX ×Q × 2X is a finite144

transition relation. We say that c ∈ R≥0 is a clock constant of A if c appears in some clock145

condition of a transition from E. A configuration of A is a pair (q, ν), where q ∈ Q and ν is a146

clock valuation. Recall that finite automata process words over a finite alphabet Σ; likewise,147

timed automata process timed words over an alphabet of the form Σ ⊎R>0, with Σ finite.148

A run of a timed automaton A on a timed word w = e1 . . . en ∈ (Σ ∪R>0)∗ is a sequence149

ρ = (q0, ν0) e1ÐÐ→ (q1, ν1) e2ÐÐ→ . . . enÐÐ→ (qn, νn), where each (qi, νi) is a configuration and150

if ei ∈ R>0, then qi+1 = qi and νi+1(x) = νi(x) + ei for all x ∈X;151

if ei ∈ Σ, then there is a transition (qi, ei, γ, qi+1, Z) ∈ E such that νi ⊧ γ and either152

νi+1(x) = 0 or νi+1(x) = νi(x) depending on whether x ∈ Z or x ∈X ∖Z.153

Thus, the set Z in a transition (qi, ei, γ, qi+1, Z) ∈ E corresponds to the subset of clocks that154

are reset when firing the transition. Note that the values of the other clocks stay unchanged.155

An example of a one clock timed automaton was given in the introduction (see Figure 1).156

A run ρ as above is successful if q0 ∈ I, ν0(x) = 0 for all x ∈ X, and qn ∈ F . A word157

w ∈ (Σ ∪R>0)∗ is accepted by A if there is a successful run of A on w.158
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Size of an automaton. The size of a finite automaton A = (Σ, Q, I, E, F ) is defined as159

∣A∣ = ∣Q∣ + ∣E∣. This is asymptotically equivalent to essentially every possible definition of160

size of a finite automaton that can be found in the literature. The size of a timed automaton161

A = (Σ, Q, X, I, E, F ) is instead defined as ∣A∣ = ∣Q∣ + ∣X ∣ + ∑(p,a,γ,q,Z)∈E ∣γ∣, where ∣γ∣ is the162

number of atomic expressions (i.e. expressions of the form x < c, x > c, x = c) appearing in163

the clock condition γ. Note that the size of a timed automaton does not take into account164

the magnitude of the clock constants. These constants are specified with the automaton and165

stored in suitable floating-point memory cells (see the computation model below).166

Computation model. As clock constants and time spans in the input stream are arbitrary167

real numbers, it is convenient to use the real RAM model of computation. This is a standard168

model with integer memory cells that can store integers and floating-point memory cells that169

can store real numbers. There are no bounds on the bit length or precision of the stored170

numbers. Basic arithmetic operations — addition, subtraction, multiplication, and division —171

can be performed in unit time, but modulo arithmetics and rounding are not included in the172

model. In fact, we do not use multiplication or division on real numbers either.173

3 The dynamic acceptance problem and main results174

The dynamic acceptance problem amounts to designing a data structure that can be initialized175

for a given timed automaton A with one clock, and afterwards, upon consuming consecutive176

elements of the data stream, efficiently maintains the information on whether the word read177

so far is accepted by A. Formally, the data structure should support the following operations:178

init(A): Initialize the data structure for a given automaton A. This automaton is fixed179

for the entire lifespan of the data structure.180

accepted(): Query whether the prefix of the stream consumed up to the current moment181

is accepted by A.182

read(e): Consume the next element e from the input stream, be it a letter from Σ or a183

time span from R>0, and update the data structure accordingly.184

The running time of each of these operations needs to be as low as possible. More precisely,185

we shall say that a data structure supports dynamic acceptance in time f(s, n) if the first186

operation init(A) takes at most f(s, 0) time, and every subsequent execution of accepted()187

or read(e) takes at most f(s, n) time, where s = ∣A∣ and n is the number of stream elements188

consumed so far. Similarly, a data structure supports dynamic acceptance in amortized time189

f(s, n) if the first operation init(A) takes at most f(s, 0) time, while every n subsequent190

operations accepted() and read(e) take at most n ⋅ f(s, n) time in total. Ultimately, we191

are mostly interested in designing data structures where the complexity guarantee f(s, n) is192

independent of n, that is, the (amortized) update time is a function of ∣A∣ only.193

In Appendix A we provide two examples of applications of the dynamic acceptance194

problem in the literature on verification. The first one concerns the sliding window model,195

while the second is about complex event processing.196

Results. We say that a stream w is discrete if its elements range over Σ⊎ {1}, that is, if all197

time spans in the stream coincide with the time unit 1. Our main result is the following:198

▶ Theorem 1. Consider the dynamic acceptance problem for timed automata with one clock.199

There is a data structure that200

supports dynamic acceptance in time 2O(∣A∣) on discrete streams, and201

supports dynamic acceptance in amortized time 2O(∣A∣) on arbitrary streams,202

???
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where A is the automaton provided upon initialization.203

We stress that the complexity in Theorem 1 depends only on the size of A. In particular, it204

does not depend on the bitlength of clock constants (e.g. 24 in Figure 1). Note that thanks205

to the assumption of the real RAM model, the question of the complexity of arithmetic206

operations on reals is separated from the running time analysis in the proof of Theorem 1.207

This feature reflects the real-life scenarios, where the automaton is small, while real numbers208

involved can be efficiently manipulated by the processor despite having large bitlength.209

The proof of Theorem 1 is presented in Section 4. We do not know whether this theorem210

can be generalized to timed automata with more than one clock while preserving independence211

of the time complexity of updates from the length of the consumed stream prefix.212

However, we establish a negative result for a slightly more powerful model of timed213

automata, called timed automata with additive constraints (see e.g. [8]). Formally, a timed214

automaton with additive constraints is defined exactly as a timed automaton — that is, as a215

tuple A = (Σ, Q, X, I, E, F ) consisting of an input alphabet, a set of states, a set of clocks,216

etc. — but clock conditions are now allowed to satisfy an extended grammar obtained by217

adding new rules of the form (∑x∈Z x) ∼ c, where Z ⊆X and ∼ ∈ {<,>,=}. For instance, one218

can write x + y ≤ c, where c is a clock constant.219

Our lower bound relies on the 3SUM conjecture, stated below. Recall that in the 3SUM220

problem we are given a set S of positive real numbers and the question is to determine221

whether there exist a, b, c ∈ S satisfying a+b = c. It is easy to solve the problem in time O(n2),222

where n = ∣S∣; the 3SUM Conjecture asserts that this cannot be significantly improved.223

▶ Conjecture 2 (3SUM Conjecture). In the real RAM model, the 3SUM problem cannot be224

solved in strongly sub-quadratic time, that is, in time O(n2−δ) for any δ > 0, where n is the225

number of values forming the input.226

The 3SUM Conjecture is widely used in computational geometry and fine-grained complexity227

theory (see an overview in [2, Appendix A]), and it was applied to establish lower bounds for228

dynamic problems in [1, 3, 23, 27]. Our lower bound, stated below, is similar in nature.229

▶ Theorem 3. If the 3SUM Conjecture holds, then there is a two-clock timed automaton230

A with additive constraints such that there is no data structure that, when initialized on A,231

supports dynamic acceptance in time O(n1−δ) for any δ > 0, where n is the length of the232

consumed stream prefix.233

The proof of the above theorem is in Appendix B, together with a broader discussion of the234

3SUM Conjecture and of the extension of timed automata by additive constraints. Again,235

we do not know whether a negative result similar to the above one also holds for plain timed236

automata (without additive constraints).237

4 Data structure: proof of Theorem 1238

Notation. Let us fix, once and for all, the timed automaton A = (Σ, Q, X, I, E, F ) with a239

single clock x that is provided upon initialization. By adding a non-accepting sink state, if240

necessary, we may assume that for every q ∈ Q and a ∈ Σ, some transition over letter a can be241

always applied at q at any time. As A uses only one clock, every configuration of A can be242

written simply as a pair (q, t), where q ∈ Q is the state and t ∈ R≥0 is the value of the clock x.243

Let 0 = C0 < C1 < . . . < Ck be the clock constants used in A, where we assume without244

loss of generality that C0 = 0. For simplicity we also let Ck+1 = ∞. Note that k ≤ ∣A∣.245
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Consider now an arbitrary stream w ∈ (Σ ∪R>0)ω. For every n ∈ N, let wn = w[1 . . . n]246

be the n-element prefix of w. Recall that wn can be thought of as the stream prefix that is247

disclosed after n operations read(e). We say that a configuration (q, t) is active at step n if248

there is a run of A on wn that starts in a configuration (q0, 0) for some q0 ∈ I and ends in249

(q, t). We let Kn be the set of all configurations (q, t) that are active at step n.250

Partitioning the problem. It is clear that the dynamic acceptance problem essentially boils251

down to designing an efficient data structure that maintains Kn upon reading subsequent252

elements from the stream. This data structure should offer a query on whether Kn contains253

an accepting configuration. The main observation is that configurations with clock values254

that are in the same order with respect to the clock constants C1, . . . , Ck satisfy exactly255

the same clock conditions in E. Precisely, let us consider the partition of R≥0 into intervals256

J0, J1, . . . J2k+1, where J2i = [Ci, Ci], J2i+1 = (Ci, Ci+1), for all p ∈ {0, . . . , k}. The following257

assertion holds: for any two configurations (q, t), (q, t′), with t, t′ ∈ Ji for some 0 ≤ i ≤ 2k + 1,258

exactly the same transitions are available in (q, t) as in (q, t′).259

For n ∈ N and i ∈ {0, . . . , 2k + 1}, let260

Kn[i] = { (q, t) ∈Kn ∶ t ∈ Ji }.261

The idea is to maintain each set Kn[i] in a separate data structure. Each of these data262

structures follows the same design, which we call the inner data structure.263

Inner data structure: an overview. Every inner data structure is constructed for an interval264

J ∈ {J0, . . . , J2k+1}. We will denote it by D[J], or simply by D[i] when J = Ji. Each structure265

D[J] stores a set of configurations L satisfying the following invariant: all clock values of266

configurations in L belong to J . In the final design we will maintain the invariant that the267

set L stored by D[i] at step n is equal to Kn[i], but for the design of D[J] it is easier to268

treat L as an arbitrary set of configurations with clock values in J .269

The inner data structure should support the following methods:270

Method init(J) stores the interval J and initializes D[J] by setting L = ∅.271

Method accepted() returns true or false, depending on whether or not L contains an272

accepting configuration, that is, a configuration (q, t) such that q ∈ F .273

Method insert(q, t) adds a configuration (q, t) to L. This method will be always applied274

with a promise that t ∈ J and t ≤ t′ for all configurations (q′, t′) already present in L.275

Method updateTime(r), where r ∈ R>0, increments the clock values of all configurations276

in L by r. All configurations whose clock values ceased to belong to J are removed from277

L, and they are returned by the method on output. This output is organised as a doubly278

linked list of configurations, sorted by non-decreasing clock values.279

Method updateLetter(a) updates L by applying to all configurations in L all possible280

transitions over the given letter a ∈ Σ. Precisely, the updated set comprises all configura-281

tions (q, t) that can be obtained from configurations belonging to L before the update282

using transitions over a that do not reset the clock. The configurations (q, 0) which can283

be obtained from L using transitions over a that do reset the clock are not included in284

the updated set, but are instead returned by the method as a doubly linked list.285

In Section 4.2 we will provide an efficient implementation of the inner data structure, which286

is encapsulated in the following lemma.287

▶ Lemma 4. For each J ∈ {J0, J1, . . . , J2k+1}, the inner data structure D[J] can be imple-288

mented so that methods init(), accepted(), insert(⋅, ⋅), and updateLetter(⋅) run in time289

2O(∣A∣), while method updateTime(⋅) runs in time 2O(∣A∣) ⋅ ℓ, where ℓ is the size of its output.290

???
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We postpone the proof of Lemma 4 and we show now how to use it to prove Theorem 1.291

That is, we design an outer data structure that monitors the acceptance of A.292

4.1 Outer data structure293

The outer data structure consists of a list D[0], . . . ,D[2k + 1], where each D[i] is a copy of294

the inner data structure constructed for the interval Ji. We will keep the following invariant:295

I1. After step n, for each i ∈ {0, 1, . . . , 2k + 1} the data structure D[i] stores Kn[i].296

We first explain how the outer data structure implements the promised operations:297

initialization, queries about the acceptance, and updates upon reading the next element of298

the stream w. Then we discuss the amortized complexity of the updates.299

Initialization. Given A, we store A in the data structure and we read the clock constants300

0 = C0 < C1 < . . . < Ck from A. Then we initialize 2k+1 copies D[0], . . . ,D[2k+1] of the inner301

data structure by calling method init(J) for each interval J among J0, J1, . . . , J2k+1. Finally,302

for each initial state q, we apply method insert(q, 0) on D[0]. As K0 = {(q, 0) ∶ q ∈ I}, after303

this we have that Invariant (I1) holds for n = 0.304

Query. We query all the data structures D[0], . . . ,D[2k + 1] for the existence of accepting305

configurations using the accepted() method, and return the disjunction of the answers. The306

correctness follows directly from Invariant (I1).307

Update by a time span. Suppose the next element from the stream is a time span r ∈ R>0. We308

update the outer data structure as follows. First, we apply method updateTime(r) to each309

data structure D[i]. This operation increments the clock values of all configurations stored310

in D[i] by r, but may output a set of configurations whose clock values ceased to fit in the311

interval Ji. Recall that this set is organised as a doubly linked list of configurations, sorted312

by non-decreasing clock values; call this list Si. Now, we need to insert each configuration313

(q, t) that appears on those lists into the appropriate data structure D[j], where j is such314

that t ∈ Jj . However, we have to be careful about the order of insertions: we process the lists315

S2k+1, S2k, . . . , S0 in this precise order, and each list Si is processed from the end, that is,316

following the non-increasing order of clock values. When processing a configuration (q, t)317

from the list Si, we find the index j > i such that t ∈ Jj and apply the method insert(q, t)318

on the structure D[j]. In this way the condition required by the insert method — that319

t ≤ t′ for every configuration (q′, t′) currently stored in D[j] — is satisfied. It is also easy to320

see that Invariant (I1) is preserved after the update.321

Update by a letter. Suppose the next symbol read from the stream is a letter a ∈ Σ. We322

update the outer data structure as follows. First, we apply method updateLetter(a) to323

each data structure D[i]. This operation applies all possible transitions on letter a to all324

configurations stored in D[i], and outputs a list of configurations Ri where the clock got325

reset. All these configurations have clock value 0, hence the length of Ri is at most ∣Q∣. It326

now suffices to insert all the configurations (q, 0) appearing on all the lists Ri to D[0] using327

method insert(q, 0). We may do this in any order, as the condition required by the insert328

method is trivially satisfied. Again, Invariant (I1) is clearly preserved after the update.329

This concludes the implementation of the outer data structure. While the correctness is330

clear from the description, we are left with arguing that the time complexity is as promised.331

From Lemma 4 it readily follows that each of the following operations takes time 2O(∣A∣):332

initialization, a query about the acceptance, and an update by a letter. As for an update333

by a time span r ∈ R>0, by Lemma 4 the complexity of such an update is 2O(∣A∣) ⋅ ∑2k+1
i=0 ∣Si∣,334

where S0, . . . , S2k+1 are the sets returned by the applications of method updateTime(r) to335
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data structures D[0], . . . ,D[2k + 1], respectively. We need to argue that the amortized time336

complexity of all these updates is bounded by 2O(∣A∣).337

Consider the following definition: a clock value t ∈ R≥0 is active at step n if Kn contains338

a configuration with clock value t. Observe that upon an update by a time span r ∈ R>0, the339

set of active clock values simply gets shifted by r, while upon an update by a letter a ∈ Σ340

it stays the same, except that clock value 0 may also become active. Since at step 0 the341

only active clock value is 0, we conclude that for every n ∈ N, at most n + 1 active clock342

values may have appeared until step n. Note that there may be at most ∣Q∣ different active343

configurations with the same active clock value, hence the complexity of each update by a344

time span is bounded by 2O(∣A∣) ⋅ ∣Q∣ times the number of active clock values that change the345

interval Ji to which they belong, where we imagine that each active clock value is shifted by346

the time span. As every active clock value can change its interval at most 2k + 1 times, and347

the total number of active values that appear until step n is at most n + 1, we conclude that348

the total time spent on updates by time spans throughout the first n steps is bounded by349

2O(∣A∣) ⋅ ∣Q∣ ⋅ (2k + 1) ⋅ (n + 1) = 2O(∣A∣) ⋅ n. Hence, the amortized time complexity is 2O(∣A∣).350

Finally, note that in the case of discrete streams each set Si consists of configurations351

with the same clock value, hence ∣Si∣ ≤ ∣Q∣ ≤ ∣A∣ for all i ∈ {0, . . . , 2k + 1}. So in this case, the352

complexity of an update by a time span is bounded by 2O(∣A∣), without any amortization.353

This finishes the proof of Theorem 1, assuming Lemma 4. We prove the latter next.354

4.2 Inner data structure355

We now describe the inner data structure D[J] and prove Lemma 4. Let us fix an interval356

J ∈ {J0, . . . , J2k+1}. We denote by L the set of configurations currently stored by the inner357

data structure D[J]. It is convenient to represent L by a function λ∶R≥0 → 2Q defined by358

λ(t) = { q ∈ Q ∶ (q, t) ∈ L}.359

We let L̂ be the set of all clock values that are active in L, that is, L̂ comprises all t ∈ R≥0360

such that λ(t) ≠ ∅. Recall that we assume that L̂ ⊆ J .361

Before we dive into the details, let us discuss the intuition. The basic idea is to store all the362

configurations in L in a queue, implemented as a doubly-linked list ordered by non-decreasing363

clock values. To handle clock values efficiently, we do not store them directly. Instead, we364

maintain a global clock that measures the total time since the initialization of the data365

structure, and each configuration bears a timestamp that is the value of this global clock366

at the moment of the last reset. Thus, updating by a time span boils down to increasing367

the value of the global clock and popping any configurations at the back of the queue whose368

clock values ceased to fit into the interval J .369

Updating by a letter is more problematic, as we need to apply the transition relation of370

the automaton A to all the configurations of L simultaneously. In the data structure we371

store a partition of the active clock values L̂ according to their images under λ(⋅), so that for372

each block of this partition (whose number is at most 2∣Q∣), we can simultaneously update373

all corresponding configurations in constant time. There is a caveat here: it is possible that374

for some t, t′ ∈ L̂ we have λ(t) ≠ λ(t′) before the update, but λ(t) = λ(t′) after the update.375

That is, the blocks of the partition may require merging upon updates. We resolve this issue376

by representing the partition in a forest, similarly as the union-find data structure would do.377

The key point is that the height of this forest can be kept bounded by 2∣Q∣.378

Description of the structure. In short, the data structure D[J] consists of three elements:379

???
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t1 t2 t3 t4 t5 . . . ti . . . tn

. . .

. . .

. . .
Figure 2 The inner data structure. List elements are depicted as squares while the forest nodes

are depicted as circles. The black circles are the roots.

The clock, denoted y, is a real that represents the total time elapsed since initialization.380

The list, denoted l, stores the set of active clock values L̂.381

The forest, denoted f, is built on top of the elements of l and describes the function λ.382

We describe the list and the forest in more details (the reader can refer to Figure 2).383

The list. The list l encodes the clock values present in L̂, sorted in the increasing order and384

organised into a doubly linked list. Each node α on l is a record consisting of:385

next(α): a pointer to the next node on the list;386

prev(α): a pointer to the previous node on the list; and387

timestamp(α) ∈ R: the timestamp of the node.388

As usual, the data structure stores l by maintaining pointers to the first and last nodes.389

The clock value represented by a node α on l is equal to clock(α) = y − timestamp(α);390

this will always be a non-negative real. Thus, the timestamp is essentially the total elapsed391

time recorded at the moment of the last reset of the clock. Note that this implementation392

allows for a simultaneous increment of clock(α) for all nodes α on l in constant time: it393

suffices to simply increment y.394

The forest. Forest f represents the mapping from elements t ∈ L̂, encoded in l, to respective395

sets of control states λ(t). It is a rooted forest where nodes may have arbitrarily many396

children, and these children are unordered. Every node γ of f is a record containing:397

parent(γ): a pointer to the parent of γ; and398

#children(γ): an integer equal to the number of children of γ.399

The leaves of the forest will always coincide with the nodes on the list l. In particular, we400

augment the records stored for the nodes on l by adding the parent(⋅) pointer, and treat401

them as nodes of the forest f at the same time. The counter #children(⋅) would always be402

equal to 0 for those nodes, so we may omit it.403

The roots of the forest are the nodes β with no parent, i.e. parent(β) = �. We will404

maintain the invariant that no root is a leaf in f, that is, every root has at least one child. In405

the data structure we store a doubly linked list containing all the roots of f. This list will be406

denoted r, and again it is stored by pointers to its first and last element. Thus, the records407

of the roots of f are augmented by next(⋅) and prev(⋅) pointers describing the structure of r,408

with the usual meaning. In addition to this, every root β of f carries two additional values:409

states(β) ⊆ Q: a non-empty subset of control states for which β is responsible; and410

rank(β): an integer from the set {1, 2, 3, . . . , 2∣Q∣}.411

We will maintain two invariants about these values. First, the sets states(β) and the ranks412

rank(β) should be pairwise different for distinct roots β of f. Note that this means that f413

always has at most 2∣Q∣ − 1 roots. Second, for every root β, the tree rooted at β — which is414

the tree containing β and all its descendants in f — has depth at most rank(β). Here, the415

depth of a forest is the maximum number of edges on a path from a leaf to a root, minus 1.416

Note that this implies that the depth of the forest f is bounded by 2∣Q∣.417
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Function λ is then represented as follows. For every node α on l, let root(α) be the root of418

the tree of f that contains α. Then denoting t = clock(α), we have λ(t) = states(root(α)).419

Note that the invariant stated above implies that from every leaf α of f, root(α) can be420

computed from α by following the parent(⋅) pointer at most 2∣Q∣ times. Hence, given t ∈ L̂421

and a node α on l satisfying t = clock(α), we can compute λ(t) in time O(2∣Q∣) ≤ 2O(∣A∣).422

Invariants. For convenience, we gather here all the invariants maintained by the inner data423

structure which we mentioned before:424

I2. For each node α on l, the value clock(α) = y − timestamp(α) belongs to J .425

I3. The nodes on l are sorted by increasing clock values, or equally by decreasing timestamps.426

That is, timestamp(α) > timestamp(next(α)) for every non-last node α on l.427

I4. Every root of f has at least one child, and the leaves of f are exactly all the nodes on l.428

I5. The roots of f carry pairwise different, non-empty sets of control states, and they have429

pairwise different ranks. Moreover, all the ranks belong to the set {1, 2, . . . , 2∣Q∣}.430

I6. For every root β of f, the depth of the tree rooted at β is at most rank(β).431

Implementation. Now we show how to implement the methods init(J), accepted(),432

insert(q, t), updateTime(r), and updateLetter(a) in the data structure. Recall that all433

these methods should work in time 2O(∣A∣), with the exception of updateTime(r) which is434

allowed to work in time 2O(∣A∣) ⋅ ℓ, where ℓ is the size of its output. The description of each435

method is supplied by a running time analysis and an argumentation of the correctness,436

which includes a discussion on why the invariants stated above are maintained.437

Removing nodes. Before we proceed to the description of the required methods, we briefly438

discuss an auxiliary procedure of removing a node from the list l and from the forest f, as439

this procedure will be used several times. Suppose we are given a node α on the list l and440

we would like to remove it, which corresponds to removing from L all configurations (q, t)441

where t = clock(α) and q ∈ λ(t). We can remove α from l in the usual way. Then we remove442

α from f as follows. First, we decrement the counter of children in the parent of α. If this443

counter stays positive then there is nothing more to do. Otherwise, we need to remove the444

parent of α as well, and accordingly decrement the counter of children in the grandparent445

of α. This can again trigger removal of the grandparent and so on. If eventually we need446

to remove a root of f, we also remove it from the list r in the usual way. Note that since447

by Invariants (I5) and (I6), the depth of f is bounded by 2∣Q∣, the whole procedure can be448

performed in time O(2∣Q∣) ≤ 2O(∣A∣). It is clear that all the invariants are maintained.449

Initialization. The init(J) method stores the interval J , that defines the range of clock450

values that could be represented in the data structure. It also sets y = 0 and initializes l and451

r as empty lists. The correctness and the running time are clear.452

Acceptance query. The accepted() method is implemented as follows. We iterate through453

the list r to check whether there exists a root β of f such that states(f) contains any454

accepting state, say q. If this is the case, then by Invariant (I4) there is a node α on l satisfying455

root(α) = β, hence (q, t) is an accepting configuration that belongs to L, where t = clock(α).456

So we may return a positive answer from the query. Otherwise, all configurations in L have457

non-accepting states, and we may return a negative answer. Note that since by Invariant (I5)458

the list r has length at most 2∣Q∣ − 1, the above procedure works in time 2O(∣A∣).459

Insertion. We now implement the method insert(q, t), where (q, t) is a configuration.460

Recall that when this method is executed, we have a promise that t ∈ J and t ≤ t′ for all461

configurations (q′, t′) that are currently present in D[J].462

???
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Let α be the first node on the list l. Let t′ = clock(α). By the promise, we have t ≤ t′.463

We consider cases: either t < t′ or t = t′. The former case also captures the situation when l464

is empty. When t < t′ or l is empty, the new configuration (q, t) gives rise to a new active465

clock value t. Therefore, we create a new list node α0 and insert it at the front of the list l.466

We set the timestamp as timestamp(α0) = y − t, so that the node correctly represents the467

clock value t. It is clear that Invariants (I2) and (I3) are thus satisfied.468

Next, we need to insert the new node α0 to the forest f. We iterate through the list469

r in search for a root β that satisfies states(β) = {q}. In case there is one, we simply470

set parent(α0) = β and increment #children(β). Otherwise, we construct a new root β0471

with states(β0) = {q} and #children(β0) = 1, insert it at the front of the list r, and set472

parent(α0) = β0. To determine the rank of β0, we find the smallest integer k ∈ {1, . . . , 2∣Q∣}473

that is not used as the rank of any other root of f. Observe that, by Invariant (I5), the forest474

f has at most 2∣Q∣ − 1 roots, so there is always such a number k, and it can be found in time475

2O(∣A∣) by inspecting the list r. We then set rank(β0) = k. It is clear that this operation can476

be performed in time 2O(∣A∣), and that Invariants (I4), (I5), and (I6) are maintained. For the477

last one, observe that the new leaf α0 is attached directly under a root of f, so no tree in f478

existing before the insertion could have increased its depth.479

We are left with the case when t = t′. We first compute the set X equal to λ(t) before480

the insertion: it suffices to find root(α) in time 2O(∣A∣) and read X = states(root(α)).481

If q ∈ X then the configuration (q, t) is already present in L, so there is nothing to do.482

Otherwise, we need to update the data structure so that λ(t) is equal to X ∪ {q} instead of483

X. Consequently, we remove the node α from l and from f, using the operation described484

earlier, and we insert a new node α′ at the front of l, with the same timestamp equal to485

that of α. Thus, clock(α′) = t. We next insert the new node α′ to the forest f using the486

same procedure as described in the previous paragraph, but applied to the state set X ∪ {q}487

instead of {q}. Again, it is clear that these operations can be performed in time 2O(∣A∣), and488

the same argumentation shows that all the invariants are maintained.489

Update by a time span. Next, we implement the method updateTime(r), for r ∈ R>0. First,490

we increment y by r. Thus, for every node α in the list l, the value clock(α) is incremented491

by r. However, the Invariant (I2) may have ceased to hold, as some active clock values could492

have been shifted outside of the interval J . The configurations with these clock values should493

be removed from the data structure and their list should be the output of the method.494

We extract these configurations as follows. Construct an initially empty list of configura-495

tion lret, on which we shall build the output. Iterate through the list l, starting from its496

back. For each consecutive node α, compute t = clock(α). If t ∈ J , then break the iteration497

and return lret, as there are no more configurations to remove. Otherwise, find root(α) in498

time 2O(∣A∣), read λ(t) = states(root(α)), and add at the front of lret all configurations499

(q, t) for q ∈ λ(t), in any order. Then remove α from the list l and from the forest f, and500

proceed to the previous node in l (if there is none, finish the iteration).501

By Invariant (I3), it is clear that in this way we remove from D[J] exactly all the502

configurations whose clock values got shifted outside of J , hence Invariants (I2) and (I3) are503

maintained. As the forest structure was influenced only by removals, Invariants (I4), (I5),504

and (I6) are maintained as well. Note that the output list lret is ordered by non-decreasing505

clock values, as required. As for the time complexity, the procedure presented above takes506

time 2O(∣A∣) ⋅ ℓ′, where ℓ′ is the number of nodes that we remove from l. As for every node α507

the set states(root(α)) is non-empty and of size at most ∣Q∣, with every removed node we508

add to lret between 1 and ∣Q∣ new configurations. Hence, we can also bound the complexity509

by 2O(∣A∣) ⋅ ℓ, where ℓ is the number of configurations that appear in the output list lret.510
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Update by a letter. We proceed to the method updateLetter(a), where a ∈ Σ. As argued511

before, every clock condition appearing in A is either true for all clock values in J , or false512

for all clock values in J . For every subset of states X ⊆ Q, let Φ(X) be the set of all states513

q such that there is a transition (p, a, q, γ,∅) in E for some p ∈ X and clock condition γ514

that is true in J . In other words, Φ(X) comprises states reachable from the states of X by515

non-resetting transitions over a that are available for clock values in J . We define Ψ(X) in a516

similar way, but for resetting transitions over a that are available for clock values in J .517

First, we compute the output of the method, which is {(q, 0) ∶ q ∈ Ψ(X)} where X is the518

set of all states appearing in the configurations of L. Note that, by Invariant (I4), X can be519

computed in time 2O(∣A∣) by iterating through the list r and computing the union of sets520

states(β) for roots β appearing on it. Thus, the output can be computed in time 2O(∣A∣).521

Second, we need to update the values of function λ by applying all possible non-resetting522

transitions over a. This can be done by iterating through the list r and, for each root β523

appearing on it, substituting states(β) with Φ(states(β)). Note that since we assumed524

that for every state q, some transition over a is always available at q, it follows that Φ maps525

non-empty sets of states to non-empty sets of states. Hence, after this substitution the roots526

of f will still be assigned non-empty sets of states. However, Invariant (I5) may cease to527

hold, as some roots may now be assigned the same set of states.528

We fix this as follows. For every root β of f, inspect the list r and find the root β′ that has529

the largest rank among those satisfying states(β) = states(β′). If β = β′, then do nothing.530

Otherwise, turn β into a non-root node of f, remove it from the list r, set parent(β) = β′, and531

increment #children(β′) by one. Note that after applying this modification, the function532

λ stored in the data structure stays the same, while Invariant (I5) becomes satisfied.533

As for the other invariants, the satisfaction of Invariants (I2), (I3), and (I4) after the534

update is clear. However, we need to be careful about Invariant (I6), as we might have535

substantially modified the structure of the forest f. Observe that each modification of f that536

we applied boils down to attaching a tree with a root of some rank i as a child of a tree with537

a root of some rank j > i. By Invariant (I6), the former tree has depth at most i, which is538

bounded from above by j − 1. Thus, after the attachment, the depth of the latter tree cannot539

become larger than j. We conclude that Invariant (I6) is maintained as well.540

Finally, note that since the number of roots of f is always bounded by 2∣Q∣ − 1, all the541

operations described above can be performed in time 2O(∣A∣).542

5 Concluding remarks and future work543

In this work we studied the dynamic acceptance problem for timed automata processing544

data streams. We designed a suitable data structure for one-clock timed automata, where545

the amortized update time depends only on the size of the automaton. We leave as an open546

question whether this result can be generalised to the case of multiple clocks.547

More generally speaking, it seems that our work identifies dynamic variants of classic548

automata problems as a potential area of interest for the paradigm of parameterized dynamic549

data structures. More precisely, if the automaton model in question allows for the device to550

potentially be in an unbounded number of configurations, then the dynamic maintenance of551

this set of configurations is a computationally challenging problem, as show-cased in this552

paper. There are multiple models of devices where similar questions can be asked. Examples553

include counter automata, register automata, weighted automata, or pushdown automata.554

???
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a, check x = C
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Figure 3 Reducing the sliding window membership problem to the dynamic acceptance problem.

A Examples649

▶ Example 5. We discuss the relationship between our monitoring problem for timed650

automata and the monitoring problem for finite monoids over a sliding window, considered651

in [28]. The common point of these two problems is when the monoid to be monitored is652

finite. In this case, the monoid is basically equivalent to a finite automaton, in the sense653

that every monoid element represents a regular language, which can then be described by a654

finite automaton. Therefore, monitoring a finite monoid over a sliding window is reducible655

to the automaton membership problem in the sliding window model (see, for instance [16]).656

We describe this problem below.657

Let A = (Σ, Q, I, E, F ) be a finite automaton and C a positive integer defining the width658

of the sliding window. The membership problem of A with a sliding window of width C659

consists of processing an arbitrary input w = a1a2a3 . . . over Σ from left to right, while660

maintaining the answer to the following query: is the sequence of the last C consumed letters661

accepted by A? The goal is design a data structure whose update time depends only on the662

automaton A, and is independent of the size of the window C.663

We now explain how the above problem can be reduced to our dynamic acceptance664

problem for timed automata. In this setting, we consider only streams that are discrete. In665

fact, we will enforce a slightly more restricted form of streams: we assume that every input666

stream belongs to the language ({1} ⋅Σ)ω, namely, that the letters from Σ are interleaved667

by the time unit 1. We map the input word w = a1a2a3 . . . to a corresponding discrete668

stream ŵ = 1a11a21a3 . . ., and modify the finite automaton A to obtain a corresponding669

timed automaton Â, as follows. We introduce a new state q̂, which will be the only final670

state of Â, and a clock x. We then replace every transition (q, a, q′) of A with the transition671

(q, a, true, q′,∅). Note that these transitions have a vacuous clock condition, hence they are672

applicable in Â whenever the original transitions of A are so. In addition, when the former673

transition (q, a, q′) reaches a final state q′ ∈ F , we also have a transition (q, a, x = C, q̂,∅)674

in Â. Finally, we add looping transitions on the initial states that reset the clock, that is,675

transitions of the form (q, a, true, q,{x}), with q ∈ I and a ∈ Σ. Figure 3 shows the timed676

automaton Â corresponding to an automaton A recognising ab∗a.677

From the above construction it is clear that Â accepts a prefix 1a1 . . . 1an of ŵ if and678

only if A accepts the C-letter factor an−C+1 . . . an of w. Thus, the membership problem for679

A in the C-width sliding window model is reduced to the dynamic acceptance problem for Â680

over the stream ŵ. By Theorem 1, we know that there is a data structure that supports681

dynamic acceptance for Â with update time 2O(∣Â∣) = 2O(∣A∣). This means that we can process682

one letter at a time from a word w, while answering in time 2O(∣A∣) whether A accepts the683

sequence of the last C consumed letters. Note that the complexity here is independent of C.684

▶ Example 6. Here we consider a scenario from complex event processing (CEP), with a685

specification language called CEL and defined by the following grammar [19]:686

φ ∶= a ∣ φ; φ ∣ φ WITHIN t687

where a ∈ Σ and t ∈ N. A word w = a1a2 . . . an ∈ Σ∗ matches an expression φ from the above688

grammar, denoted w ⊨ φ, if one of the following cases holds:689
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φ = ((a; b) WITHIN 4); c WITHIN 10

a b c

≤ 4
≤ 10

Â ∶
∗

a ∣ reset x b, x ≤ 4 c, x ≤ 10

Figure 4 Translation of a CEL expression into an equivalent single-clock timed automaton.

φ = an,690

φ = φ1; φ2, w = w1 ⋅w2, w1 ⊨ φ1 and w2 ⊨ φ2,691

φ = φ′ WITHIN t and am . . . an ⊨ φ′, where m =max{1, n − t}.692

Given a word w = a1a2 . . . and an expression φ, we would like to read w sequentially, as in693

a stream, and decide, at each position n = 1, 2, . . . , whether the prefix wn = a1 . . . an matches694

a fixed expression φ. One can reduce this latter problem to our monitoring problem for timed695

automata, by using a discrete timed word ŵ = 1a11a21 . . . as before and by translating the696

expression φ into an appropriate timed automaton. We omit the straightforward details of697

the translation of a CEL expression to an equivalent timed automaton, and we only remark698

that every occurrence of the WITHIN operator in an expression corresponds to a condition699

on a specific clock in the equivalent timed automaton. This means that, in general, the700

translation may require a timed automaton with multiple clocks. However, there are simple701

cases (which we do not characterize here) where, even in the presence of nested WITHIN702

operators, one can construct an equivalent timed automaton with a single clock. For example,703

consider the expression φ = ((a; b) WITHIN 4); c WITHIN 10, which describes a sequence704

containing three (possibly not contiguous) events a, b, c, with a and b at distance at most 4705

and a and c at distance at most 10. Figure 4 shows a single-clock timed automaton that706

is equivalent to φ, in the sense that it accepts a timed word of the form 1a11a21 . . . 1an if707

and only if a1a2 . . . an ⊨ φ. In this case one can validate any input stream against a fixed708

expression φ in time that is constant per input letter, by simply reducing to our dynamic709

acceptance problem for single-clock timed automata and discrete timed words.710

B Lower bound for two-clock timed automata with additive711

constraints712

In this section, we prove a complexity lower bound for a variant of the dynamic acceptance713

problem. Ideally, we would like to prove that there is a timed automaton A with two clocks714

such that no data structure can support dynamic acceptance for A in time depending only715

on ∣A∣. This would imply that our result (Theorem 1) for the dynamic acceptance problem716

for single-clock timed automata cannot be generalised to the multiple-clock setting. We are717

not able to establish optimality in this sense.718

We can however prove a result along the same line, by considering timed automata719

extended with additive constraints, that is, having clock conditions of the form (∑x∈Z x) ∼ c.720

To give some background, let us discuss in more detail the power of this extension. Allowing721

additive constraints is a nontrivial extension of timed automata and in particular it makes722

the emptiness problem undecidable [8, Theorem 2]. However, undecidability holds when723

at least four clocks are available. Moreover, it is shown that for timed automata with724

???
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additive constraints with two clocks the emptiness problem is decidable; and the proof is a725

straightforward modification of the standard region construction [8, Proposition 1].726

Our lower bound is based on the 3SUM Conjecture, which we restate below for conve-727

nience.728

▶ Conjecture 2 (3SUM Conjecture). In the real RAM model, the 3SUM problem cannot be729

solved in strongly sub-quadratic time, that is, in time O(n2−δ) for any δ > 0, where n is the730

number of values forming the input.731

The 3SUM Conjecture was introduced by Gajentaan and Overmars [14, 15] in a stronger732

form, which postulated the non-existence of sub-quadratic algorithms, that is, achieving733

running time o(n2). This formulation was refuted by Grønlund and Pettie [20], who gave an734

algorithm for 3SUM with running time O(n2/(log n/ log log n)2/3) in the real RAM model,735

which can be improved to O(n2(log log n)2/ log n) when randomization is allowed. However,736

the existence of a strongly sub-quadratic algorithm is conjectured to be hard.737

Recall that in the 3SUM problem we are given a set S of positive real numbers and the738

question is to determine whether there exist a, b, c ∈ S satisfying a + b = c. We remark that739

the original phrasing of the conjecture allows non-positive numbers on input and asks for740

a, b, c ∈ S such that a + b + c = 0. It is easy to reduce this standard formulation to our setting,741

for example by replacing S with S′ = {3M + x ∶ x ∈ S} ∪ {6M − x ∶ x ∈ S}, where M is any742

real satisfying M > ∣a∣ for all a ∈ S.743

The 3SUM Conjecture has received significant attention in the recent years, as it was744

realised that it can be used as a base for tight complexity lower bounds for a variety of discrete745

graph problems, including questions about efficient dynamic data structures [1, 3, 23, 27]. In746

this setting, it is common to assume the integer formulation of the conjecture: there exists747

d ∈ N such that the 3SUM problem where the input numbers are integers from the range748

[−nd, nd] cannot be solved in strongly sub-quadratic time, assuming the word RAM model749

with words of bit length O(log n). It is straightforward to verify that the construction we750

are going to present in this section can be turned into an analogous lower bound assuming751

the integer formulation of the 3SUM Conjecture. For this, we would need to amend the752

formulation of the monitoring problem by assuming that the input stream is expected to have753

total length at most N , the clock constants and the time spans in the stream are integers of754

bit length at most M , and the data structure solving the monitoring problem should work in755

the word RAM model with words of bit length O(M + log N).756

We now prove Theorem 3, restated below for convenience. That is, we provide a lower757

bound for the dynamic acceptance problem for two-clock timed automata with additive758

constraints under the 3SUM Conjecture.759

▶ Theorem 3. If the 3SUM Conjecture holds, then there is a two-clock timed automaton760

A with additive constraints such that there is no data structure that, when initialized on A,761

supports dynamic acceptance in time O(n1−δ) for any δ > 0, where n is the length of the762

consumed stream prefix.763

Our approach is similar in spirit to the other lower bounds on dynamic problems, which764

we mentioned above [1, 3, 23, 27]. We first prove 3SUM-hardness of deciding acceptance by765

a timed automaton with additive constraints in the static setting. We then show that any766

data structure that supports monitoring in amortized strongly sub-linear time would violate767

the 3SUM-hardness of the former static acceptance problem, thus proving Theorem 3.768

The postulated hardness of the static problem is captured by the following lemma.769



A. Grez, F. Mazowiecki, Mi. Pilipczuk, G. Puppis and C. Riveros ??:19

p1

p2

q1

q2

r1

r2

♢

♢

♢

♢

♢

♢

♢
∣ reset x

♠
∣ res

et y
♢
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Figure 5 Timed automaton for reducing 3SUM.

▶ Lemma 7. If the 3SUM Conjecture holds, then there is a two-clock timed automaton A with770

additive constraints for which there is no algorithm that, given a timed word w ∈ (Σ ⊎R>0)
∗

771

as input, where Σ is a two-letter alphabet, decides whether A accepts w in time O(n2−δ) for772

any δ > 0 and for n = ∣w∣.773

Proof. We construct a two-clock timed automaton A with additive constraints and an774

algorithm that given a set S of n positive reals, outputs a word w ∈ (Σ ⊎R>0)
∗ such that775

w is accepted by A if and only if there are a, b, c ∈ S satisfying a + b = c. We find it more776

convenient to first present the construction of w from S. Then we present the automaton A777

and analyze its runs on w.778

Let M = 1 +maxs∈S ∣s∣. By sorting S we may assume that S = {s1, s2, . . . , sn}, where779

0 < s1 < . . . < sn <M . We set Σ = {♢,♠}. The word is defined as780

w = u ♠ u ♠ v,781

where782

u = 2(M − sn) ♢ 2(sn − sn−1) ♢ 2(sn−1 − sn−2) ♢ . . . ♢ 2(s2 − s1) ♢ 2(s1 − 0);783

v = (M − sn) ♢ (sn − sn−1) ♢ (sn−1 − sn−2) ♢ . . . ♢ (s2 − s1) ♢.784

Note that w has length O(n) and can be constructed from S in time O(n log n). Intuitively,785

the factors u, u, and v above are responsible for the choice of a, b, and c, respectively. We786

now describe a timed automaton A that accepts w if and only if a + b = c.787

The automaton A is depicted in Figure 5. It uses two clocks, named x and y. Note that788

all the transitions have trivial (always true) clock conditions, apart from the transition from789

r1 to r2, where we check that the sum of clock values is equal to 4M . The only initial state790

is p1, the only accepting state is r2.791

We now analyze the runs of A on w, with the goal of showing that A accepts w if and792

only if there are a, b, c ∈ S such that a + b = c. Consider any successful run ρ of A on w.793

Observe that the moment of reading the first symbol ♠ in w must coincide with firing the794

transition from p2 to q1. At this moment, the automaton has consumed the first factor u795

of w, and there was a moment where it moved from state p1 to state p2 upon reading one796

of the ♢ symbols from u. Supposing that the transition in ρ from p1 to p2 happens at the797

i-th symbol ♢ of u, the clock valuation at the moment of reaching q1 for the first time must798

satisfy x = 2(si − si−1) + . . . + 2(s2 − s1) + 2s1 (= 2si) and y = 0. We conclude the following.799

▷ Claim 8. The set of possible clock valuations at the moment of reaching the state q1 for800

the first time is {(x = 2a, y = 0) ∶ a ∈ S}.801

Next, observe that the moment of reading the second occurrence of ♠ in w must coincide802

with firing the transition from q2 to r1. Between the first and the second symbol ♠ the803

???



??:20 Dynamic data structures for timed automata acceptance

automaton consumes the second factor u, and during this the clock x increases exactly by the804

sum of the time spans within u, i.e. by 2M . On consuming the second factor u, the clock y is805

reset once, and precisely when firing the transition from q1 to q2, which happens on reading806

one of the occurrences of ♢ in u. Again, if this happens when reading the j-th occurrence of807

♢, then, after the reset, y is incremented by exactly 2sj units. We conclude the following.808

▷ Claim 9. The set of possible clock valuations at the moment of reaching the state r1 for809

the first time is {(x = 2a + 2M, y = 2b) ∶ a, b ∈ S}.810

Finally, after consuming the last factor v, the automaton can move to the accepting811

state r2 if and only if at some point, upon reading an occurrence of ♢, the condition812

x + y = 4M holds. Observe that the sum of the first k numbers encoded in v is equal to813

M − sn−k+1. Hence, after parsing those numbers, the set of possible clock valuations is814

{(x = 2a + 2M +M − c, y = 2b +M − c) ∶ a, b ∈ S}, for some choice of c ∈ S. Moreover, the815

latter valuations satisfy the condition x + y = 4M if and only if a + b = c.816

Based on the above arguments, we infer that a successful run like ρ exists on input w if817

and only if there are a, b, c ∈ S such that a + b = c. To conclude the proof, we observe that818

if an algorithm could decide whether A accepts w in time O(n2−δ) for any δ > 0, then by819

combining this algorithm with the presented construction, one could solve 3SUM in time820

O(n2−δ). This would contradict the 3SUM Conjecture. ◀821

Theorem 3 now follows almost directly from the previous lemma. Consider the timed822

automaton A provided by Lemma 7. If a data structure as in the statement of the theorem823

existed, then using this data structure one could decide in strongly sub-quadratic time824

whether any input timed word w is accepted by A, by simply applying the sequence of825

read(⋅) operations corresponding to w, followed by the query accepted().826
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